Worksheet for 2020-08-31

Questions marked with ${ }^{* *}$ are less relevant to the core material and/or more difficult.
Problem 1. A particle starts at the origin at time $t=0$ and follows the path $x=f(t), y=g(t)$ illustrated in Figure 1. At time $t=1$, it returns to the origin. Compute

$$
\int_{0}^{1} f(t) g^{\prime}(t) \mathrm{d} t \text { and } \int_{0}^{1} g(t) f^{\prime}(t) \mathrm{d} t
$$

by interpreting them in terms of areas. How are the two values related to each other?
${ }^{* *}$ It turns out that this relationship between these two integrals holds as long as the path ends where it starts (as it does in this example). Can you explain why?

Figure 1. Problem 1

$$
\text { So integral is } 3 / 2+4-9 / 2=1 \text {. }
$$

By simitar reasoning, can find $\int_{0}^{1} g(t) f^{\prime}(t) d t=-1$
Observe:

$$
\begin{aligned}
& \int_{0}^{1} f(t) g^{\prime}(t) d t+\int_{0}^{1} g(t) f^{\prime}(t) d t \\
& =\int_{0}^{1} \frac{d}{d t}(f(t) g(t)) d t \\
& =f(1) g(1)-f(0) g(0) \\
& =0 . \quad \text { The curve ends where it started: } \\
& \quad f(0)=f(1) \text { and } g(0)=g(1) .)
\end{aligned}
$$

Problem 2. Find a Cartesian equation for the parametric curve $x=t^{3}+t, y=t^{2}+2$. Then compute $\mathrm{d} y / \mathrm{d} x$, using (a) methods from Chapter 10 , and ($b^{* *}$) implicit differentiation (hopefully at least one person in your group remembers how to do this!). Do you get the same answer?

From $y=t^{2}+2$ we get $t^{2}=y-2$.
Then $x=t\left(t^{2}+1\right)$

$$
\begin{aligned}
& x^{2}=t^{2}\left(t^{2}+1\right)^{2}=(y-2)(y-1)^{2}=y^{3}-4 y^{2}+5 y-2 \\
& \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{2 t}{3 t^{2}+1}
\end{aligned}
$$

By implicit diff: $\quad 2 x=3 y^{2} \frac{d y}{d x}-8 y \frac{d y}{d x}+5 \frac{d y}{d x}$

$$
\frac{d y}{d x}=\frac{2 x}{3 y^{2}-8 y+5}
$$

Looks different at a glance. But: $\frac{2 x}{3 y^{2} \cdot 8 y+5}=\frac{2 t^{3}+2 t}{3 t^{4}+4 t^{2}+1}$ $=\frac{2 t\left(t^{2}+1\right)}{\left(t^{2}+1\right)\left(3 t^{2}+1\right)}=\frac{2 t}{3 t^{2}+1}$ so it is actually the same.

Problem 3. There are two points on the curve

$$
x=2 t^{2}, y=t-t^{2},-\infty<t<\infty
$$

where the tangent line passes through the point $(10,-2)$. Find these two points.

(figure not to scale)

At $t=a$, the slope of the tangent line is $\frac{1-2 a}{4 a}$ (if $a \neq 0$) So the equation (by point-slope form) is

$$
4 a\left(y-\left(a-a^{2}\right)\right)=(1-2 a)\left(x-2 a^{2}\right)
$$

(Note that this is valid even when $a=0$.)
We need

$$
\begin{aligned}
& \text { to pass through }(10,-2) \text {. So: } \\
& 4 a\left(-2-\left(a-a^{2}\right)\right)=(1-2 a)\left(10-2 a^{2}\right) .
\end{aligned}
$$

Simplify and solve: $a=1,5$. So $\left(2 a^{2}, a-a^{2}\right)=\begin{array}{r}(2,0) \text { and } \\ (50,-20)\end{array}$ are the points in question

Problem 4.
(a) Write down a parametrization $x=f(t), y=g(t)$ for the circle $x^{2}+y^{2}=1$ which starts at $(1,0)$ when $t=0$, goes around once counterclockwise, and ends at $(1,0)$ when $t=2 \pi$.
(b) Adjust your parametrization so that it completes the revolution in 1 unit of time, instead of 2π (ie. it returns to (1,0) at $t=1$ instead of $t=2 \pi)$. Note that you are still parametrizing $x^{2}+y^{2}=1$; the circle itself has not changed.
(c) Take this curve (the unit circle centered at the origin) and stretch it horizontally by a factor of 3 (so you get an ellipse centered at the origin). Write down a Cartesian equation and a parametrization for the result.
(d) Take the ellipse from (c) and translate it up in the positive y-direction by 5 units (so you get an ellipse centered at $(0,5)$). Write down a Cartesian equation and a parametrization for the result.
(a) $x=\cos t \quad y=\sin t$ is the "standard" way.
(b) $x=\cos (2 \pi t) \quad y=\sin (2 \pi t)$.

$$
x=3 \cos t \quad y=\sin t
$$

$$
\text { (d) }\left(\frac{x}{3}\right)^{2}+(y-5)^{2}=1 \quad x=3 \cos t \quad y=\sin t+5
$$

Problem 5** (Stereographic projection from the "north pole"). In Figure 2, the circle $x^{2}+y^{2}=1$ has been depicted, together with a line passing through the points $(0,1)$ and $(t, 0)$. This line intersects the circle at a point (other than $(0,1)$), whose coordinates depend on the value of t. Find these coordinates $(f(t), g(t))$. Does the parametrization $x=f(t), y=g(t),-\infty<$ $t<\infty$ trace out the entire unit circle?

See also: Stewart 10.1.40-44, which are similar in flavor (producing a parametrization from a geometric construction).

Figure 2. Problem 5

$$
\left\{\begin{array}{l}
x^{2}+y^{2}=1 \\
x=t-t y
\end{array}\right.
$$

$$
a y^{2}+b y+c=0
$$

We know $y=1$ is one solution (sine the curves intersect at $(0,1)$). The other solution is thus

$$
n=\frac{t^{2}-1}{t^{2}+1} \quad(b / c-b / 4 \text { is the sima a the memes, or }
$$ $\%$ is the product)

So $x=t-t y=\frac{2 t}{t^{2}+1}$
(Check that $x^{2}+y^{2}=1$ it yon want to make sure it work!)

